Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.331
1.
Sci Rep ; 14(1): 10592, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719900

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Anti-Bacterial Agents , Gas Chromatography-Mass Spectrometry , Hexanes , Phytochemicals , Vegetables , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Vegetables/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Hexanes/chemistry , Apiaceae/chemistry , Microbial Sensitivity Tests , Allylbenzene Derivatives , alpha-Linolenic Acid/analysis , alpha-Linolenic Acid/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fatty Acids, Unsaturated/analysis , Staphylococcus aureus/drug effects , Dioxolanes
2.
Sci Rep ; 14(1): 10675, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724667

Trillium govanianum is traditionally used to treat innumerable alignments like sexual disorders, cancer, inflammation etc. Mainly rhizomes of T. govanianum have been explored for phytochemical profiling but comprehensive metabolomics of other parts has not been yet deeply investigated. Thus, current study was aimed for organs-specific (roots, rhizomes, rhizomatous buds, stems, leaves, and fruits) phytochemical profiling of T. govanianum via metabolomics approach. Targeted (steroidal saponins and free sugars) and non-targeted metabolomics were performed by UPLC-PDA/ELSD & UHPLC-Q-TOF-IMS. Among steroidal compounds, 20-hydroxyecdysone, pennogenin-3-O-ß-chacotrioside, dioscin were found predominantly in all samples while diosgenin was identified only in rhizomes. Further, four free sugars viz. 2-deoxyribose (116.24 ± 1.26 mg/g: leaves), fructose (454.76 ± 12.14 mg/g: rhizomes), glucose (243.21 ± 7.53 mg/g: fruits), and galactose (69.06 ± 2.14 mg/g: fruits) were found significant in respective parts of T. govanianum. Elemental analysis of targeted samples was determined by atomic absorption spectrophotometer. Heavy metals (Cd, Hg, Pd, As) were absent while micro- (Mn, Na, Zn, Cu) and macro- (Ca, Fe, Mg, K) elements were found in all samples. Furthermore, UHPLC-Q-TOF-IMS had identified 103 metabolites based on their mass fragmentation patterns and 839 were tentatively predicted using METLIN database. The multivariate statistical analysis showed organs specific clustering and variance of metabolites. Apart from this, extracts were evaluated for in vitro anticholinesterase activity, and found potentials inhibitors with IC50 values 2.02 ± 0.15 to 27.65 ± 0.89 mg/mL and 3.58 ± 0.12 to 16.81 ± 2.48 mg/mL of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme, respectively. Thus, comprehensive metabolomics and anti-cholinesterase activity of different parts of T. govanianum would lay the foundation for improving medicinal importance and health benefits of T. govanianum.


Cholinesterase Inhibitors , Metabolomics , Trillium , Metabolomics/methods , Cholinesterase Inhibitors/pharmacology , Trillium/chemistry , Trillium/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/analysis , Chromatography, High Pressure Liquid , Rhizome/chemistry , Plant Roots/chemistry , Plant Roots/metabolism
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731845

Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize PLE parameters, such as temperature, extraction duration, and pressure, to maximize bioactive compound (polyphenols, flavonoids, and ascorbic acid) yield from M. oleifera leaves and evaluate their antioxidant and anti-inflammatory activities. According to the outcomes of this research, the maximum achieved total polyphenol content was 24.10 mg gallic acid equivalents (GAE)/g of dry weight (dw), and the total flavonoid content was increased up to 19.89 mg rutin equivalents (RtE)/g dw. Moreover, after HPLC-DAD analysis, neochlorogenic and chlorogenic acids, catechin and epicatechin, rutin, and narirutin were identified and quantified. As far as the optimum ascorbic acid content is concerned, it was found to be 4.77 mg/g dw. The antioxidant activity was evaluated by three different methods: ferric reducing antioxidant power (FRAP), the DPPH method, and the anti-hydrogen peroxide activity (AHPA) method, resulting in 124.29 µmol ascorbic acid equivalent (AAE)/g dw, 131.28 µmol AAE/g dw, and 229.38 µmol AAE/g dw values, respectively. Lastly, the albumin denaturation inhibition was found to be 37.54%. These findings underscore the potential of PLE as an efficient extraction method for preparing extracts from M. oleifera leaves with the maximum content of bioactive compounds.


Antioxidants , Moringa oleifera , Plant Extracts , Plant Leaves , Moringa oleifera/chemistry , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/isolation & purification , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Polyphenols/isolation & purification , Polyphenols/pharmacology , Polyphenols/analysis , Polyphenols/chemistry , Ascorbic Acid/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Chromatography, High Pressure Liquid/methods , Pressure , Liquid-Liquid Extraction/methods , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732062

Prunella vulgaris (PV) is one of the most commonly used nutraceuticals as it has been proven to have anti-inflammatory and antioxidant properties. The aim of this study was to evaluate the phytochemical composition of PV and its in vivo antioxidant properties. A phytochemical analysis measuring the total phenolic content (TPC), the identification of phenolic compounds by HPLC-DAD-ESI, and the evaluation of the in vitro antioxidant activity by the DPPH assay of the extract were performed. The antioxidant effects on inflammation induced by turpentine oil were experimentally tested in rats. Seven groups with six animals each were used: a control group, the experimental inflammation treatment group, the experimental inflammation and diclofenac sodium (DS) treatment group, and four groups with their inflammation treated using different dilutions of the extract. Serum redox balance was assessed based on total oxidative status (TOS), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), total thiols, and an oxidative stress index (OSI) contents. The TPC was 0.28 mg gallic acid equivalents (GAE)/mL extract, while specific representatives were represented by caffeic acid, p-coumaric acid, dihydroxybenzoic acid, gentisic acid, protocatechuic acid, rosmarinic acid, vanillic acid, apigenin-glucuronide, hesperidin, kaempferol-glucuronide. The highest amount (370.45 µg/mL) was reported for hesperidin, which is a phenolic compound belonging to the flavanone subclass. The antioxidant activity of the extracts, determined using the DPPH assay, was 27.52 mmol Trolox/mL extract. The PV treatment reduced the oxidative stress by lowering the TOS, OSI, NO, and MDA and by increasing the TAC and thiols. In acute inflammation, treatment with the PV extract reduced oxidative stress, with lower concentrations being more efficient and having a better effect than DS.


Antioxidants , Inflammation , Oxidative Stress , Phytochemicals , Plant Extracts , Prunella , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Rats , Prunella/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Oxidative Stress/drug effects , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Phenols/pharmacology , Phenols/analysis , Rats, Wistar
6.
PLoS One ; 19(5): e0302795, 2024.
Article En | MEDLINE | ID: mdl-38743731

BACKGROUND: Natural propolis has been used since decades owing to its broad-spectrum activities. Burn injuries are a global health problem with negative impacts on communities. Bacterial infections usually accompany burns, which demand implementation of antibiotics. Antibiotics abuse led to emergence of microbial drug resistance resulting in poor treatment outcomes. In such instances, the promising alternative would be natural antimicrobials such as propolis. OBJECTIVE: Full chemical profiling of propolis and evaluation of in vitro antibacterial, antioxidant and anti-inflammatory activities as well as in vivo burn healing properties. METHODS: Chemical profiling of propolis was performed using Liquid chromatography (UHPLC/MS-PDA and HPLC-PDA). In vitro assessment was done using Disc Diffusion susceptibility test against Staphylococcus aureus and infected burn wound mice model was used for in vivo assessment. In vitro antioxidant properties of propolis were assessed using DPPH, ABTS and FRAP techniques. The anti-inflammatory effect of propolis was assessed against lipopolysaccharide/interferon-gamma mediated inflammation. RESULTS: UHPLC/MS-PDA results revealed identification of 71 phytochemicals, mainly flavonoids. Upon flavonoids quantification (HPLC-PDA), Pinocembrin, chrysin and galangin recorded high content 21.58±0.84, 22.73±0.68 and 14.26±0.70 mg/g hydroalcoholic propolis extract, respectively. Propolis showed concentration dependent antibacterial activity in vitro and in vivo burn healing via wound diameter reduction and histopathological analysis without signs of skin irritation in rabbits nor sensitization in guinea pigs. Propolis showed promising antioxidant IC50 values 46.52±1.25 and 11.74±0.26 µg/mL whereas FRAP result was 445.29±29.9 µM TE/mg. Anti-inflammatory experiment results showed significant increase of Toll-like receptor 4 (TLR4), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) mRNA levels. Nitric oxide and iNOS were markedly increased in Griess assay and western blot respectively. However, upon testing propolis against LPS/IFN-γ-mediated inflammation, TLR4, IL-6 and TNF-α expression were downregulated at transcriptional and post-transcriptional levels. CONCLUSION: Propolis proved to be a promising natural burn healing agent through its antibacterial, antioxidant and anti-inflammatory activities.


Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Burns , Propolis , Staphylococcus aureus , Wound Healing , Propolis/chemistry , Propolis/pharmacology , Animals , Burns/drug therapy , Burns/pathology , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Wound Healing/drug effects , Staphylococcus aureus/drug effects , Male , Phytochemicals/pharmacology , Phytochemicals/chemistry , Chromatography, High Pressure Liquid , Flavonoids/pharmacology , Microbial Sensitivity Tests
7.
Med Oncol ; 41(6): 144, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717574

Peganum harmala has been extensively employed in Algerian traditional medicine practices. This study aimed to explore the impact of n-butanol (n-BuOH) extract sourced from Peganum harmala seeds on cell proliferation, cell migration, and angiogenesis inhibition. Cytotoxic potential of n-BuOH extract was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay against human breast adenocarcinoma MCF-7 cells, cell migration was determined using scratch assay, and anti-angiogenic effect was evaluated through macroscopic and histological examinations conducted on chick embryo chorioallantoic membrane. Additionally, this research estimated the phytochemical profile of n-BuOH extract. Fifteen phenolic compounds were identified using Ultra-performance liquid chromatography UPLC-ESI-MS-MS analysis. In addition, the n-BuOH extract of P. harmala exhibited potent antioxidant and free radical scavenging properties. The n-BuOH extract showed potent cytotoxicity against MCF-7 cell with an IC50 value of 8.68 ± 1.58 µg/mL. Furthermore, n-BuOH extract significantly reduced migration. A strong anti-angiogenic activity was observed in the groups treated with n-BuOH extract in comparison to the negative control. Histological analysis confirmed the anti-angiogenic effect of the n-BuOH extract. This activity is probably a result of the synergistic effects produced by different polyphenolic classes.


Angiogenesis Inhibitors , Cell Movement , Peganum , Phenols , Plant Extracts , Humans , Cell Movement/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Peganum/chemistry , Chick Embryo , Phenols/pharmacology , Phenols/analysis , Angiogenesis Inhibitors/pharmacology , MCF-7 Cells , Animals , Cell Proliferation/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply
8.
Malar J ; 23(1): 141, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734650

BACKGROUND: The development of resistance by Plasmodium falciparum is a burdening hazard that continues to undermine the strides made to alleviate malaria. As such, there is an increasing need to find new alternative strategies. This study evaluated and validated 2 medicinal plants used in traditional medicine to treat malaria. METHODS: Inspired by their ethnobotanical reputation of being effective against malaria, Ziziphus mucronata and Xysmalobium undulutum were collected and sequentially extracted using hexane (HEX), ethyl acetate (ETA), Dichloromethane (DCM) and methanol (MTL). The resulting crude extracts were screened for their anti-malarial and cytotoxic potential using the parasite lactate dehydrogenase (pLDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. This was followed by isolating the active compounds from the DCM extract of Z. mucronata using silica gel chromatography and structural elucidation using spectroscopic techniques (NMR: 1H, 12C, and DEPT). The active compounds were then targeted against P. falciparum heat shock protein 70-1 (PfHsp70-1) using Autodock Vina, followed by in vitro validation assays using ultraviolet-visible (UV-VIS) spectroscopy and the malate dehydrogenase (MDH) chaperone activity assay. RESULTS: The extracts except those of methanol displayed anti-malarial potential with varying IC50 values, Z. mucronata HEX (11.69 ± 3.84 µg/mL), ETA (7.25 ± 1.41 µg/mL), DCM (5.49 ± 0.03 µg/mL), and X. undulutum HEX (4.9 ± 0.037 µg/mL), ETA (17.46 ± 0.024 µg/mL) and DCM (19.27 ± 0.492 µg/mL). The extracts exhibited minimal cytotoxicity except for the ETA and DCM of Z. mucronata with CC50 values of 10.96 and 10.01 µg/mL, respectively. Isolation and structural characterization of the active compounds from the DCM extracts revealed that betulinic acid (19.95 ± 1.53 µg/mL) and lupeol (7.56 ± 2.03 µg/mL) were responsible for the anti-malarial activity and had no considerable cytotoxicity (CC50 > µg/mL). Molecular docking suggested strong binding between PfHsp70-1, betulinic acid (- 6.8 kcal/mol), and lupeol (- 6.9 kcal/mol). Meanwhile, the in vitro validation assays revealed the disruption of the protein structural elements and chaperone function. CONCLUSION: This study proves that X undulutum and Z. mucronata have anti-malarial potential and that betulinic acid and lupeol are responsible for the activity seen on Z. mucronata. They also make a case for guided purification of new phytochemicals in the other extracts and support the notion of considering medicinal plants to discover new anti-malarials.


Antimalarials , Phytochemicals , Plant Extracts , Plasmodium falciparum , Ziziphus , Antimalarials/pharmacology , Antimalarials/chemistry , Ziziphus/chemistry , Plasmodium falciparum/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Drug Discovery
9.
Nat Prod Res ; 38(11): 1956-1960, 2024 Jun.
Article En | MEDLINE | ID: mdl-38739565

Magonia pubescens is a natural species from the Brazilian cerrado biome. Its fruits and seeds are used in the treatment of seborrheic dermatitis, a common inflammatory skin disease. In this work, the known compounds lapachol, stigmasterol, maniladiol and scopoletin were isolated from hexane and dichloromethane extracts of M. pubescens branches. The aqueous extract of this material was fractioned through a liquid-liquid partition and the obtained fractions were analyzed by UHPLC-MS/MS. The results obtained were compared with data from three databases, leading to the putative identification of 51 compounds from different classes, including flavonoids, saponins and triterpenes. The cytotoxicity of aqueous fractions was assayed against breast cancer (MDA-MB-231) and leukemia (THP-1 and K562) cells. The best activity was observed for fraction AE3 against MDA-MB-231 cells (IC50 30.72 µg.mL-1).


Antineoplastic Agents, Phytogenic , Breast Neoplasms , Phytochemicals , Plant Extracts , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Breast Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Female , Phytochemicals/pharmacology , Phytochemicals/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Brazil , Leukemia/drug therapy , Flavonoids/pharmacology , Flavonoids/chemistry , K562 Cells , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Saponins/pharmacology , Saponins/chemistry , THP-1 Cells , Molecular Structure
10.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731401

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Azadirachta , Dihydroorotate Dehydrogenase , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors , Schistosomiasis , Azadirachta/chemistry , Animals , Schistosomiasis/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Molecular Dynamics Simulation , Schistosoma mansoni/drug effects , Schistosoma mansoni/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Computer Simulation , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/therapeutic use , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Praziquantel/pharmacology , Praziquantel/chemistry , Praziquantel/therapeutic use
11.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731491

Catnip (Nepeta cataria L.) plants produce a wide array of specialized metabolites with multiple applications for human health. The productivity of such metabolites, including nepetalactones, and natural insect repellents is influenced by the conditions under which the plants are cultivated. In this study, we assessed how field-grown catnip plants, transplanted after being propagated via either single-node stem cuttings or seeds, varied regarding their phytochemical composition throughout a growing season in two distinct environmental conditions (Pittstown and Upper Deerfield) in the state of New Jersey, United States. Iridoid terpenes were quantified in plant tissues via ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS), and phenolic compounds (phenolic acids and flavonoids) were analyzed via UHPLC with diode-array detection (UHPLC-DAD). The highest contents of total nepetalactones in Pittstown were found at 6 weeks after transplanting (WAT) for both seedlings and cuttings (1305.4 and 1223.3 mg/100 g, respectively), while in Upper Deerfield, the highest contents for both propagules were at 11 WAT (1247.7 and 997.1 mg/100 g, respectively) for seed-propagated and stem cuttings). The highest concentration of nepetalactones was associated with floral-bud to partial-flowering stages. Because plants in Pittstown accumulated considerably more biomass than plants grown in Upper Deerfield, the difference in nepetalactone production per plant was striking, with peak productivity reaching only 598.9 mg per plant in Upper Deerfield and 1833.1 mg per plant in Pittstown. Phenolic acids accumulated in higher contents towards the end of the season in both locations, after a period of low precipitation, and flavone glycosides had similar accumulation patterns to nepetalactones. In both locations, rooted stem cuttings reached their maximum nepetalactone productivity, on average, four weeks later than seed-propagated plants, suggesting that seedlings have, overall, better agronomic performance.


Nepeta , Seasons , Nepeta/chemistry , Chromatography, High Pressure Liquid , Phytochemicals/chemistry , Phytochemicals/analysis , Flavonoids/analysis , Flavonoids/chemistry , Cyclopentane Monoterpenes , Seeds/chemistry , Seeds/growth & development , Plant Extracts/chemistry , Iridoids/chemistry , Pyrones
12.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731500

A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.


Phytochemicals , Plants, Medicinal , Plants, Medicinal/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Africa , Animals
13.
Molecules ; 29(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731504

Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.


Polyphenols , Polyphenols/chemistry , Polyphenols/pharmacology , Humans , Plants, Medicinal/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Asteraceae/chemistry
14.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731546

Worldwide, a massive amount of agriculture and food waste is a major threat to the environment, the economy and public health. However, these wastes are important sources of phytochemicals (bioactive), such as polyphenols, carotenoids, carnitine, coenzymes, essential oils and tocopherols, which have antioxidant, antimicrobial and anticarcinogenic properties. Hence, it represents a promising opportunity for the food, agriculture, cosmetics, textiles, energy and pharmaceutical industries to develop cost effective strategies. The value of agri-food wastes has been extracted from various valuable bioactive compounds such as polyphenols, dietary fibre, proteins, lipids, vitamins, carotenoids, organic acids, essential oils and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market used for different industrial sectors. The value of agri-food wastes and by-products could assure food security, maintain sustainability, efficiently reduce environmental pollution and provide an opportunity to earn additional income for industries. Furthermore, sustainable extraction methodologies like ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, microwave-assisted extraction, pulse electric field-assisted extraction, ultrasound microwave-assisted extraction and high hydrostatic pressure extraction are extensively used for the isolation, purification and recovery of various bioactive compounds from agri-food waste, according to a circular economy and sustainable approach. This review also includes some of the critical and sustainable challenges in the valorisation of agri-food wastes and explores innovative eco-friendly methods for extracting bioactive compounds from agri-food wastes, particularly for food applications. The highlights of this review are providing information on the valorisation techniques used for the extraction and recovery of different bioactive compounds from agricultural food wastes, innovative and promising approaches. Additionally, the potential use of these products presents an affordable alternative towards a circular economy and, consequently, sustainability. In this context, the encapsulation process considers the integral and sustainable use of agricultural food waste for bioactive compounds that enhance the properties and quality of functional food.


Phytochemicals , Phytochemicals/chemistry , Agriculture/methods , Waste Products/analysis , Food , Food Loss and Waste
15.
Molecules ; 29(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38731596

This work aimed to develop gluten-free snacks such as crispbread based on beetroot pomace (Beta vulgaris L.) and golden linseed (Lini semen). Beetroot is attracting more and more consumer attention because of its nutritional and health properties. The use of beet pomace contributes to waste management. Linseed, known as a superfood with many health-promoting properties, was used to produce crispbreads as an alternative to cereals, which are allergens. Beetroot pomace and whole or ground linseed were used in different proportions to produce crispbread snacks. Chemical and physical analyses were performed including water activity, dry matter, betalains, and polyphenols content, as well as Fourier transform infrared spectroscopy (FTIR). A sensory evaluation and microstructure observations were also performed. The obtained snacks were characterized by low water activity (0.290-0.395) and a high dry matter content (93.43-97.53%), which ensures their microbiological stability and enables longer storage. Beetroot pomace provided betalains-red (14.59-51.44 mg betanin/100 g d.m.) and yellow dyes (50.02-171.12 mg betanin/100 g d.m.)-while using linseed enriched the product with polyphenols (730-948 mg chlorogenic acid/100 g d.m.). FTIR analysis showed the presence of functional groups such as the following: -OH, -C-O, -COOH, and -NH. The most desired overall consumer acceptability was achieved for snacks containing 50% beetroot pomace and 50% linseed seeds. The obtained results confirmed that beetroot pomace combined with linseed can be used in the production of vegetable crispbread snacks.


Beta vulgaris , Flax , Snacks , Beta vulgaris/chemistry , Flax/chemistry , Vegetables/chemistry , Betalains/chemistry , Betalains/analysis , Polyphenols/analysis , Polyphenols/chemistry , Spectroscopy, Fourier Transform Infrared , Diet, Gluten-Free , Phytochemicals/chemistry , Glutens/analysis , Glutens/chemistry
16.
Molecules ; 29(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38731619

This study aims to investigate the vegetative buds from Picea abies (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS. Moreover, the antioxidant activity with the DPPH method, and the antimicrobial activity were tested. Heavy metal detection was performed by graphite furnace atomic absorption spectrometry. The main components of the alcoholic extract were astragalin, quercetin, kaempferol, shikimic acid, and quinic acid. A total content of 25.32 ± 2.65 mg gallic acid equivalent per gram of dry plant (mg GAE/g DW) and of 10.54 ± 0.083 mg rutin equivalents/g of dry plant (mg RE/g DW) were found. The essential oil had D-limonene, α-cadinol, δ-cadinene, 13-epimanool, and δ-3-carene as predominant components. The spruce vegetative buds exhibited significant antioxidant activity (IC50 of 53 µg/mL) and antimicrobial effects against Staphylococcus aureus. Furthermore, concentrations of heavy metals Pb and Cd were below detection limits, suggesting that the material was free from potentially harmful contaminants. The results confirmed the potential of this indigenous species to be used as a source of compounds with pharmacological utilities.


Anti-Infective Agents , Antioxidants , Oils, Volatile , Phytochemicals , Picea , Plant Extracts , Picea/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Romania , Phenols/analysis , Phenols/pharmacology , Phenols/chemistry
17.
Molecules ; 29(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38675535

Moslae Herba (MH) can be used for both medicine and food and has a long history of medicine. MH has the effects of sweating and relieving the exterior, removing dampness and harmonizing, and is mainly used for colds caused by damp heat in summer. It is called "Xiayue Zhi Mahuang" in China. So far, 123 chemical compounds have been isolated and identified from MH, including flavonoids, terpenoids, phenolic acids, phenylpropanoids, and other chemical compounds. Its chemical components have a wide range of pharmacological activities, including antibacterial, antiviral, anti-inflammatory, antioxidant, analgesic sedation, antipyretic, immune regulation, insecticidal, and other effects. In addition, because of its aromatic odor and health care function, MH also has development and utilization value in food, chemical, and other fields. This paper reviewed the research progress of MH in botany, traditional uses, phytochemistry, and pharmacology and provided a possible direction for further research.


Medicine, Chinese Traditional , Phytochemicals , Animals , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
18.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630337

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Cell Death , Ethanol , Neurons , Neuroprotective Agents , Plant Extracts , Plant Leaves , Sterculia , Animals , Rats , Caspase 3/metabolism , Ethanol/administration & dosage , Ethanol/chemistry , Ethanol/toxicity , Hydrogen Peroxide/toxicity , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Rats, Wistar , Sterculia/chemistry , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Neurons/cytology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Lactate Dehydrogenases/metabolism , GAP-43 Protein/analysis , Apoptosis/genetics , Oxidative Stress/genetics , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/physiology , Male , Female , Cells, Cultured , Cell Death/drug effects , Gene Expression Regulation/drug effects , Phytochemicals/administration & dosage , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Secondary Metabolism
19.
Microb Pathog ; 190: 106635, 2024 May.
Article En | MEDLINE | ID: mdl-38579934

The plant Erythrina indica comes under Fabaceae family, mainly used for used in traditional medicine as nervine sedative, antiepileptic, antiasthmatic, collyrium in opthalmia, antiseptic. Current study focused synthesize of silver nanoparticles (AgNPs) by E. indica leaf ethanol extract. The green-synthesized AgNPs underwent characterization using multiple analytical techniques, including UV-visible, FTIR, DLS, SEM, TEM, XRD, and EDX, and estimation of their antioxidant activity and antimicrobial activity. Phytochemical analysis identified alkaloids, tannins, saponins, flavonoids, and phenols as secondary metabolites. The Total Phenol Content (TPC) was determined to be 237.35 ± 2.02 mg GAE-1, indicating a substantial presence of phenolic compounds. The presence of AgNPs was verified through UV-Visible analysis at 420 nm, and FT-IR revealed characteristic phenolic functional groups. DLS analysis indicated a narrow size distribution (polydispersity index - PDI: 3.47%), with SEM revealing spherical AgNPs of approximately 20 nm. TEM showed homogeneous, highly polycrystalline AgNPs with lattice spacing at 0.297. XRD analysis demonstrated crystallinity and purity, with distinct reflection peaks corresponding to miller indices of JCPDS card no. 01 087 1473. In vitro, AgNPs exhibited robust antioxidant activity like; DPPH, ABTS, and H2O2, surpassing E. indica-assisted synthesis. ABTS assay indicated higher antioxidant activity (81.94 ± 0.05%) for AgNPs at 734 nm, while E. indica extraction showed 39.67 ± 0.07%. At 532 nm, both E. indica extraction (57.71 ± 0.11%) and AgNPs (37.41 ± 0.17%) exhibited H2O2 scavenging. Furthermore, AgNPs displayed significant antimicrobial properties, inhibiting Staphylococcus aureus (15.7 ± 0.12 mm) and Candida albicans (10.7 ± 0.17 mm) byfor the concentration of 80 µg/mL. Through the characterizations underscore of the potential of Erythrina indica-synthesized AgNPs, rich in polyphenolic compounds, for pharmacological, medical, biological applications and antipyretic properties.


Anti-Infective Agents , Antioxidants , Erythrina , Metal Nanoparticles , Microbial Sensitivity Tests , Phytochemicals , Plant Extracts , Plant Leaves , Silver , Silver/chemistry , Silver/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Erythrina/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Leaves/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Spectroscopy, Fourier Transform Infrared , Phenols/chemistry , Phenols/pharmacology , X-Ray Diffraction , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Green Chemistry Technology , Candida albicans/drug effects , Tannins/pharmacology , Tannins/chemistry
20.
Phytochemistry ; 222: 114096, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641141

Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.


Forsythia , Quality Control , Forsythia/chemistry , Humans , Fruit/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/isolation & purification , Animals , Molecular Structure
...